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Abstract. We report the occurrence of critical probabilities associated with the maximum
of diversity and the maximum number of fragments (clusters) on a two-dimensional square
lattice. Some scaling relations of these two variables are observed in accordance with work on
fragmentation processes.

Recently, the diversity of mass of fragments has been proposed as a measurement of the
complexity in aggregation and fragmentation processes [1]. The concept of diversity appears
in various problems in biology [2], evolution [3], self-organization and cellular automata
[4, 5], fractals [6, 7] and non-equilibrium phenomena [8]. In the last few years the diversity
of size or mass has been studied from the point of view of computer simulations in several
dissipative processes and cellular automata which generate a distribution of clusters and are
of interest in physics, chemistry, biology and ecology [9–11]. In this letter we show that
in the problem of the random occupation of a square lattice with probabilityp, two critical
probabilities,Pc(Nmax) andPc(Dmax), respectively, appear in connection with two statistical
variables, namely the total number of fragments

N(p) =
〈∑

s

N(s, p)

〉
(1)

and the diversity of mass of fragments,

D(p) =
〈∑

s

2[N(s, p)]

〉
. (2)

In these expressions,N(s, p) is the number of fragments of sizes, in a single experiment,
for occupation probabilityp; 2(x) = 1 if x > 0 and2(x) = 0 otherwise and the averaging
〈 〉 is over different experiments. A fragment is defined here as a collection of occupied
sites connected by nearest-neighbour relationships.

We perform Monte Carlo simulations on square lattices with size varying fromL2 = 322,
642, 1282, 2562, 5122, 10242 and 20482, with averages taken on 2000, 1000, 800, 800, 400,
200 and 50 experiments. The lattices were randomly occupied with probabilityp ranging
from 0.05 to 0.95 with steps of 0.01 between 0.15 to 0.60 and steps of 0.05 on the other
regions. The variablesN andD were measured as functions of bothL andp.
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Figure 1. Collapsing curvesN/L2 against the probability of occupationp, obtained from seven
different values ofL ranging from 32 to 2048.

Figure 2. The ratioD/L1/2 as a function ofp for L = 2048 (×), 1024(+), 512 (O), 256 (M),
128 (♦), 64 (�), 32 (◦).

In figure 1 we have a plot ofN normalized byL2, so that all the curves collapse
independent of the lattice size.N increases withp until it attains a configuration where the
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Figure 3. Log–log plot ofNmax versusDmax. The straight line has a slope of value 2, giving
the robust scaling relationNmax∼ D2

max. The insets shows the log–log plots ofDmax versusL
andNmax againstL.

Figure 4. Plot of the linear fit forP(Dmax) as a function of 1/L, the straight line has an
intercept at 0.55± 0.02.

maximum,Nmax, is reached and then decreases afterwards. The shape of this plot is the
same for all the different values ofL and the maximum is obtained in a fixed probability.
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Figure 5. Similar to graph in figure 4 but forP(Nmax) as a function of 1/L, giving
Pc(Nmax) = 0.27± 0.01.

The diversity densityD/L2 written as a function ofp does not collapse the curves for
all Ls. It is necessary to include another scaling factor which we assume to beD/L2+1 and
1 is in principle some function ofp added to the exponent ofL. In figure 2 is shown the
dependence ofD/L2+1 onp. For the best collapsing curve we found that 2+1 = 1/2 and
so1 = −3/2. However the curves do not collapse well in the interval 0.456 p 6 0.65,
showing that diversity is rather complex and1 cannot be simply a constant. In this graph
two characteristics must be noted, first that all curves present a definite probability where the
maximum of diversity is attained. Second, the shape of the curves changes withL. Doing a
kurtosis analysis of the degree of peakedness we found that for smallerL the curves present
a mesokurtic distribution and asL increases it changes to a leptokurtic distribution. This
indicates that the rate of increase in diversity for differentLs is higher in the maximum
region. So, for a system with larger size we expect to find a smaller region inp where a
high diversity or complexity occur, showing that diversity can be tuned by parametersp

andL.
In these simulations we also found the robust scaling relationNmax ∼ D2

max shown in
figure 3. This scaling was observed in different fragmentation and aggregation dynamics
on lattices of various dimensionalities [1, 8, 11]. In the insets we have the scaling relations
Dmax∼ L andNmax∼ L2 observed in our simulations.

To determine the critical probabilities associated withDmax and Nmax at the
thermodynamic limit, that is forL → ∞, we plot P(Dmax) versus 1/L as shown in
figure 4. A linear fit gives usPc(Dmax) equals 0.55± 0.02. Note thatPc(Dmax) is smaller
than the percolation threshold for the site percolation problem on a two-dimensional square
lattice. That is so because the percolation cluster spanning the lattice does not make room
for the emergence of clusters of intermediary sizes.
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In figure 5 we have the plot ofP(Nmax) versus 1/L giving Pc(Nmax) = 0.27± 0.01.
For largeN we need a configuration where smaller and isolated clusters occur, so it is
reasonable thatPc(Nmax) has a lower value thanPc(Dmax). In an ideal situationN would
attain its maximum on a configuration in which an occupied site is followed by an empty
site throughout a line. The next line would be a shift of the first and so on. Note that
for this configuration one would say thatp should have the value of 0.5. But taking into
consideration the neighbourhood relations, in this case the four nearest neighbours, and the
unlikelihood that this ideal situation could happen, the overall value ofp for N to attain its
maximum is lower than 0.5 as is shown in figure 1.

In conclusion, we have described the behaviour of cluster size diversity,D, and number
of fragments (clusters),N , in a randomly-occupied square lattice with probabilityp. An
interesting tuning effect forN andD has been shown and two new critical probabilities
were introduced in this problem related to the percolation system [12]. In the light of
recent results [1], the occurrence ofPc(Dmax) is significant since it is a critical probability
associated with the maximum complexity of the system.

We gratefully acknowledge M A F Gomes for valuable discussions and comments on the
manuscript. This work was supported by CAPES (Brazilian Government Agency).
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